HIGHLY SELECTIVE INTRODUCTION OF CONJUGATED DIENES TO GOOD DIENOPHILES, $\alpha,\beta\textsubscript{-}{}\textsub$

Yoshinori NARUTA, Naoshi NAGAI, Yoshihiro ARITA, and Kazuhiro MARUYAMA*

Department of Chemistry, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606

The reaction of 2,4-pentadienyltrimethylstannane with α , β -unsaturated carbonyl compounds and p-quinones in the presence of Lewis acid affords the corresponding pentadienylated products in fair to good yield without formation of any Diels-Alder adduct.

Introduction of conjugated dienes to organic molecules is very important for their versatile utility in organic synthesis. However, α , β -unsaturated carbonyl compounds, especially quinones, are excellent dienophiles, to which selective dienylation is generally difficult because of preferable formation of Diels-Alder adducts. In the course of total synthesis of naturally occurring quinones, e.g. anthracyclinones and mitomycins, increasing demand for direct 2,4-pentadienylation to the above good dienophiles made us develop a new methodology, which overcomes the expected difficulty and is of wide applicability to organic synthesis.

We report here a successful 2,4-pentadienylation of quinones and α , β -unsaturated carbonyl compounds with 2,4-pentadienyltrimethylstannane in excellent selectivity.

In our previous papers, 5) quinones were suitably allylated with allyltrial-kylstannanes. This methodology was extended to the present reaction. Typical example of 2,4-pentadienylation of p-quinones was performed as follows. To a $\rm CH_2Cl_2$ solution of 2,5-dimethylbenzoquinone (1.0 mmol), $\rm BF_3\cdot OEt_2$ (2.0 mmol) was added at -78 °C followed by the addition of 2,4-pentadienyltrimethylstannane 6) (1)(1.2 mmol) to afford the corresponding dienylated hydroquinone, which was oxidized with $\rm Ag_2O$ to give 2,5-dimethyl-3-(2',4'-pentadienyl)benzoquinone in an 86% isolated yield (Eq. 1a). Any Diels-Alder adduct was not detected in the reaction mixture by means of TLC and $^1\rm H-NMR$. Marked contrast was observed in the reactions used the corresponding silyl derivative (2), which gave only an apparent Diels-Alder adduct under the simi-

lar conditions (Eq. 1b). The remarkable difference may be attributed to the high ionizing ability of ${\rm Me}_3{\rm Sn}$ group. The generality of the present reaction is obvious from Table 1. 7) In the reaction of 2,4-hexadienyltrimethylstannane (3),8) ${\rm Me}_3{\rm Sn}^{-\alpha}$ CH₂CH=CHCH=CHCH₃, with quinones, regioselectivity concerning hexadienyl moiety depends on the substituents on p-quinones: in the case of p-benzoquinone, " ϵ adduct" was predominant product (Table 1, entry 2). On the other hand, when ortho position of p-benzoquinones was substituted, " α adduct" was exclusively obtained (Table 1, entry 4).

The generality observed in the dienylation of quinones is also realized in the reaction of α , β -unsaturated carbonyl compounds. Crotonaldehyde was successfully converted to 1,3,7-nonatrien-6-ol in a 70% isolated yield (1/BF;0Et2/-78°C/0.5 h) (Eq. 2a). When the silyl derivative 2 was utilized, only the cyclic adduct was reported to be obtained (Eq. 2b). Remarkable difference between the stannanes and the silanes was also observed. Other α , β - and α , β , γ , δ -unsaturated aldehydes react-

Table 1. 2,4-Penta- and Hexadienylation of p-Quinones with Stannyl Reagents a)

Entry	Quinone	Stannane	Product ^{b)}	Isolated yield/%	Entry	Quinone	Stanna	ne	Product ^{b)}	Isolated yield/%
1		1	0Ac 0Ac	c,d) 67(94)	6	Me N	le	Me 0	N _e	₃₈ e)
2		<u>3</u>	0 (15 part	56 ^e)	7	Me Me	1	Me He	I Me	75 ^{e)}
	0		(85 part)	s)	8	e0	1	e0 0 e0 0	Me	61 ^{e)}
3	Me Me	Me、 1	Me O	82(86)	9		1			43(58) ^{c,e)}
4	Me Me	Me- 3	Me Me	≻ ₅₂ e)	10		1			/ 23(39) ^c ,e)
5	Me O	1 Me		76 ^{.e)}		Y Y OH O		ОН	T 0	23(33)

a) All reactions were performed as follows; to 10 ml of anhydrous CH₂Cl₂ solution of p-quinone (1.0 mmol), BF₃·OEt₂ (2.0 mmol) was added at -78 °C. After successive addition of the organostannane (1.2 mmol), the reaction mixture was stirred for 1 h. b) Satisfactory IR, NMR, and mass spectral data were obtained. c) Yield in parentheses was determined by lH-NMR. d) Product was isolated after esterification with acetic anhydride-pyridine for the sake of the instability of the corresponding hydroquinone. e) Product was isolated after mild oxidation with silver oxide.

Table 2. 2,4-Penta- and Hexadienylation of α , β -Unsaturated Carbonyl Compounds with Stannyl Reagents

Entry	Substrate St	annanes	a) Conditions	Products ^{b)}	Isolated yield/%
1	CHO (I)	1	А	OH	70
2	I	<u>3</u>	А	OH	51 ^{c)}
3	СНО	1	В	OH	50
4	CHO	1	В	OH OH	36
5	Ph CHO(II)	1	С	Ph	73
6	II	<u>3</u>	С	Ph	32 ^{d)}
7	Рһ	<u>1</u>	С	Ph OH	54
8	Ph Ph(III)	1	D	Ph	70 ^{f)}
9	III	<u>3</u>	D	Ph 0	₅₈ e)

a) Every dienylation was performed in 1.0 mmol scale according to the similar method shown in Table 1. Reaction conditions, A:BF;OEt2;-78 °C;0.5 h. B: BF;OEt2; -78 °C--50 °C; 0.5 h. C: BF;OEt2; -78 °C--10 °C; 1 h. D: AlCl3 (as 2 M ether solution); -78 °C--10 °C; 1 h. b) Satisfactory IR, NMR, and mass spectral data were obtained. d) Erythro:threo=82:18. e) The starting ketone was recovered in 43% yield. f) Several ketones reacted similarly.

ed in the 1,2 fashion to afford the corresponding unsaturated alcohol in fair to good yield (Table 2). α,β -Unsaturated ketone afforded the corresponding 1,4 adducts in the reaction with $\underline{1}$ or $\underline{3}$. High erythro selectivity was attained in the

reaction of $\frac{3}{2}$ with aldehydes (Table 2, entries 2 and 6). 10)

This work was supported by funds from Yamada Science Foundation and by Grant-in-Aid for Scientific Research from the Ministry of Education.

References

- 1) For reviews of intramolecular [4+2] cycloaddition, see W.Oppolzer, Angew. Chem., Int. Ed. Engl., 16, 10 (1977), Heterocycles, 14, 1615 (1980); G.Brieger and J.N.Bennett, Chem. Rev., 80, 63 (1980).
- 2) Recently the reaction of 2 with α,β-unsaturated carbonyl compounds under the presence^{2a)} or absence^{2b)} of Lewis acid was reported to give preferentially Diels-Alder adducts, see a) D. Seyferth, J.Pornet, and R.M.Weinstein, Organometallics, 1, 1651 (1982); b) H.Hosomi, M.Saito, and H.Sakurai, Tetrahedron Lett., 21, 3783 (1980).
- 3) Y.Naruta, M.Kashiwagi, Y.Nishigaichi, H.Uno, and K.Maruyama, Chem. Lett., the following paper.
- 4) Y.Naruta, Y.Arita, N.Nagai, H.Uno, and K.Maruyama, Chem. Lett., 1982, 1859.
- 5) Y.Naruta, J. Am. Chem. Soc., <u>102</u>, 3774 (1980); Y.Naruta, J. Org. Chem., <u>45</u>, 4097 (1980); K.Maruyama, A.Takuwa, Y.Naruta, K.Satao, and O.Soga, Chem. Lett., <u>1981</u>, 47; Y.Naruta, J. Chem. Soc., Chem. Commun., 1981, 1227.
- 6) 2,4-Pentadienylstannane was prepared by the reaction of pentadienyl lithium with chlorotrimethylstannane and has a boiling point of 105 °C/1.6 kPa (Kugelrohr) and is the mixture of the stere-oisomers (trans:cis=69:31), according to its 400 MHz ¹H-NMR spectrum in CDCl₃.

trans-1:

$$\begin{array}{c} \text{cis-}\underline{1}\text{:} & \text{H}^{\text{4}} \\ \text{Me}_{3}\text{SnC}(\text{H}^{1})_{2} \\ \text{H}^{2} \end{array}$$

 $\begin{array}{l} \text{$\delta$ \ 0.12 (9 \text{H, } dd, \ J_{119}_{\text{Sn-H}}=53.4 \ Hz, \ J_{117}_{\text{Sn-H}}=50.9 \ Hz, \ (\text{CH}_3)_{3}-5 \text{N})$, \ 1.92 (1 \text{H, } d, \ J_{\text{H}^1-\text{H}^2}=9.5 \ Hz, \ \text{H}^1)$, \ 4.96 (1 \text{H, } dd, \ J_{\text{H}^4-\text{H}^6}=10.4 \ \text{Hz}, \ J_{\text{H}^5-\text{H}^6}=2.4 \ \text{Hz}, \ \text{H}^6)$, \ 5.08 (1 \text{H, } dd, \ J_{\text{H}^4-\text{H}^5}=15.9 \ \text{Hz}, \ J_{\text{H}^5-\text{H}^6}=2.4 \ \text{Hz}, \ \text{H}^5)$, \ 5.64 (1 \text{H, } dt, \ J_{\text{H}^2-\text{H}^3}=10.7 \ \text{Hz}, \ J_{\text{H}^1-\text{H}^2}=9.5 \ \text{Hz}, \ H^2)$, \ 6.58 (1 \text{H, } ddd, \ J_{\text{H}^4-\text{H}^5}=15.9 \ \text{Hz}, \ J_{\text{H}^3-\text{H}^4}=11.0 \ \text{Hz}, \ J_{\text{H}^4-\text{H}^6}=10.4 \ \text{Hz}, \ \text{H}^4)$.} \end{array}$

- 7) The possible γ adduct $\underline{4}$ was not obtained except in the entry 6 (19% isolated yield).
- 8) Stereoisomeric mixture was used.
- 9) If a polar, stepwise process shown in Eq. 3 were taking place in the reaction of quinone with 3, ϵ adducts would be exclusively obtained in every case.

$$\mathbb{R}^{1} \longrightarrow \mathbb{R}^{2}$$

$$\mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$$

$$\begin{cases} SnMe_3 \\ R + \varepsilon \end{cases} + \begin{cases} SnMe_3 \\ C-Sn \text{ fission} \\ H \text{ sigmatropy} \end{cases}$$

4 R=H or Me

(3)

10) Similar excellent stereoselectivity was reported in the reaction of crotylstannane with aldehyde, see Y.Yamamoto, H.Yatagai, Y.Naruta, and K.Maruyama, J. Am. Chem. Soc., 102, 7107 (1980).

(Received July 22, 1983)